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III. GRAVITATIONAL FIELDS

Determination of the Earth’s gravitational field from satellite orbits:
methods and results

By A. H. Coox
National Physical Laboratory, Teddington, Middlesex

I

ad
i The structure of theories used in determining the gravitational field from the perturbations of
> s orbits of artificial satellites is discussed and it is shown how it corresponds to the fact that small
@) E departures from a Keplerian ellipse are readily observed. Some current problems are mentioned.
e Statistical problems in the estimation of parameters of the field from orbital data are considered
E @) and recent estimates are summarized.
=3

1. INTRODUCTION

It will not be necessary to recount how observations of the very first artificial satellites
greatly improved our knowledge of the external gravity field of the Earth, nor how, since
that time, this knowledge has rapidly become more refined and detailed, for that is well
known. The important geodetic and geophysical applications of the new data are also
common knowledge.

The subjects of this review are the theoretical methods available for the determination
of the potential from observations of orbits, the numerical and statistical problems that
arise in applying those methods to available observations, and an indication of the range
and reliability of the results we now have, together with some remarks on the geophysical
implications they bear. '

It is important to emphasize a restriction which can be imposed on the theories. We shall
concentrate attention on those features of an orbit which depend on the small departures
of the external potential from that of a point mass and we wish, if possible, to isolate these
features from those dependent on atmospheric drag or other factors in which, for the
present purpose, we are not interested. The theory required for the study of the potential
is thus not necessarily a complete theory of orbits in the sense that it would enable the
position of a satellite at any given time to be calculated from the initial conditions; the
more restricted aim will be to classify and calculate the departures from a simple orbit.
The potential of the Earth is dominated by the term of zero order, —u/r (4 = fM, where
fis the gravitational constant and A/ the mass of the Earth), but the greatest interest,
geophysically and geodetically, attaches to the small departures from this term; orbits in
the potential —u/r are ellipses, so that the principal purpose of the theory will be to study
the departures from ellipses that arise from the small terms of higher order in the potential.

Expressed as a series of spherical harmonics, the potential is usually written as
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= [1 _s (%)"{ann(cos 0)+3 (C,, cos mA-+-S, sin mA)Pm (cos G)}],

where (7, 4, 1) are spherical polar coordinates and «, is the equatorial radius of the Earth.
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120 A. H. COOK

2. STRUCTURE OF ORBITAL THEORIES

The Hamiltonian formulation of dynamics is particularly well suited for studying the
effects of higher order terms in the potential. The equations of motion in canonical form

read ; _iF, ' __‘9_12
P "o T o

where, in the usual notation, p,, ¢,, are conjugate momentum and coordinate variables
and F is the Hamiltonian, equal to the kinetic energy 7 plus the potential energy V.

It may happen that the Hamiltonian is independent of one or more of the momenta or
coordinates; if p,, for example, does not appear in F, then ¢, is a constant of the motion.
For this to happen the potential must be of a particularly simple form, ¥} say, the cor-
responding Hamiltonian being F,. A potential, V, which does not differ much from 7,
may be written as V;+1] and if the Hamiltonian is F,+ F,, the equations of motion in V

are L AFAF) . AFR)
b=, 0T b
But since JF,/dp, = 0, g, = —dkF|ap,
1
and so q, = f a&’zl dt+a constant.
The point of this formulation is that if V] is small, it may be easy to calculate the
integral.

However, more significant is the fact that this formulation of the equations of motion
concentrates attention on the matters of interest, namely the departures of an orbit from
a known orbit in an elementary potential V. — u/r is such an elementary potential and the
orbits in it are ellipses which are of constant form and orientation in space; the orbital
elements ¢ (semi-major axis), ¢ (eccentricity), o (longitude of perigee), ¢ (inclination) and
Q (longitude of node) are constants, while the mean anomaly [ is equal to nt and increases
steadily with time. Thus it must be possible to write the Hamiltonian for this dynamical
system in such a way that it is a function of one parameter only, namely that conjugate to
the mean anomaly. The elliptic elements are not themselves a set of canonically conjugate
variables but the pairs in the following set, the Delaunay variables, are canonically

conjugate: L = (pa)}, [ = nt;
G = L(1—e?)}, g = w;
H = G cos i, b= Q.

The momentum constants, L, G, H, are the integral constants of the motion, namely,
the energy, the total angular momentum and the angular momentum about a prescribed
axis (that for which ¢ = n).

Corresponding to the potential —g/r, the position of a satellite would be given in
spherical polar coordinates (7, , 1), with corresponding momenta (p,, 4, ;). Although the
potential is independent of # and A, the kinetic energy is dependent on the momenta;
thus none of the coordinates is a constant of the motion and this is not a suitable system for
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DISCUSSION ON ORBITAL ANALYSIS 121

representing small departures from an elliptic orbit. The transformation to the Delaunay
variables can be derived by a general method. Suppose that a dynamical system can be
described by two sets of canonical momenta and coordinates (p,, ¢,) and (P,, @), say. They
will then be related by the expression

%(P,dQs—p,dg,) = dS,

where S is the transforming function, a function of (g,, ¢,) and (P,, Q,) in general.
Then if p,, g, and § are known, P, = 28/0Q)..

The Hamilton—Jacobi partial differential equation enables a transforming function $ to
be found such that all but one of the momenta and coordinates P,, (,, are constants, the
remaining one being a linear function of time. This equation simply states that if F'is a
constant, «,, say, then all the rates of change of the transformed variables, except one, will

vanish. The equation reads as oS

(([1 cee qn,‘&?l--.P?n) == ne
If a solution exists, it will involve n arbitrary constants «, which may be equated to the
Q,, while the momentum constants, f, = —dS$/da,, except for g, = t— dS/oa,.

The Hamilton—-Jacobi equation admits of solutions only in special cases. The coordinate
system must be one of the eleven in which Laplace’s equation separates and the potential
must be of proper form. For spherical polar coordinates, the potential is —u/r and the
transformed momenta and coordinates are the Delaunay variables.

Some time has been spent on this discussion of the Hamiltonian equations because it
shows that the changes in the orbital elements, or more strictly in the Delaunay variables,
are naturally and directly related to the departure of the actual potential from the form

—pr. _
The equations of motion for a potential V equal to —u/r-+V] are then

L =jd, [= —3dV[oL+n,

and so on (n is the mean motion of the satellite).

To solve them, V] must be expressed as a function of the Delaunay variables. That is
rather inconvenient. It is natural to write the potential outside the Earth as a series of
spherical harmonics, functions of (r,6,1) and when written as functions of the Delaunay
variables, the expressions are cumbersome. Somewhat simpler expressions arise when the
harmonics are written in terms of the elliptic elements and it is therefore usual for first-
order theories to transform the Hamiltonian equations of motion for the Delaunay variables
to equations of motion for the elliptic elements.

The transformations are elementary and lead to the Lagrangian equations:

.2 i 2 N
= e A " nate dl  nale dw’
n dV, cotidV -1 44
"~ na*ysing o1’

Gla—0uM_ LMoy, w20
na’y dv  na’nsing 9’ na’e de na da’
(o = 1-e2).

16 VoL. 262. A.
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122 A. H. COOK

Except for the term proportional to the second zonal harmonic P, (cos #), all harmonic
terms in the potential are of order 1076 or less of the zero-order term, —u/r; a first-order
theory is therefore adequate for them all and the only difficulties are the algebraic ones of
writing a term such as P, (cos #) as a function of cos 7. The second zonal harmonic is of
order 1073 of — u/r, its square is of the order of the higher harmonics, and its effects must
therefore be calculated with a second-order theory in which the elements that enter the
right sides of the equations of motion are not assumed to be constant. Such theories have
been given for the Lagrangian equations (Merson 1961; Kozai 1959; Zhongholovitch &
Pellinen 1962).

In first-order theories, exact definitions of the orbital elements are not required but they
must be considered in second-order theories. The difficulties arise from the fact that the
elements change with the position of the satellite in the orbit. The elliptical elements are
osculating elements, that is they are the elements of that elliptic orbit, the arc of which
coincides in position and velocity with the arc of the actual orbit at the position of the
satellite; if the satellite is not following an elliptic orbit the osculating elements change
as the satellite goes round the orbit. It is convenient to remove some of the short-term
variations by dealing with clements averaged over the orbit and then the exact way in
which the average is taken affects the form of the results of a second-order theory. The
theories mentioned thus give results which superficially are somewhat different but it has
been shown that they are in fact equivalent (Cook 1963).

The algebraic complexity of the second-order theories is considerable and the Lagrangian
equations are no longer clearly superior to the Hamiltonian equations, particularly since
the latter admit a treatment which helps to clarify the definition of the variables in a
second-order theory. This treatment, first applied to artificial satellite theory by Brouwer
(1959), is due to von Zeipel and is an extension of the transformation theory already used
to find variables of which the Hamiltonian is independent.

If the potential is taken to bejust —ufr[14-(a,/r)? J,P, (cos 6)], where a, is the equatorial
radius of the Earth, the Hamiltonian is a function of the energy and angular momenta,
L, G, H, of the mean anomaly and of the longitude of the node, 4. The aim of von Zeipel’s
transformation is to find transformed variables, denoted by primes, L’ ..., such that the
Hamiltonian is independent of say [’ as well as of /#’. The procedure is to derive the new
variable from the old by a transforming function § which is assumed to be close to the
identical transformation, S;; thus S = 8,45,

where §; is small, of order J,.
The transformed Hamiltonian F* differs from the original form F only through the
difference between L and L’ and so by Taylor’s theorem,

F* = F+ (L'--L) oF|JL.
V may be taken to be —y/r in calculating JF/JL, while
L' = 38/ol' and L = aS,/dl,
so that L'—L = d§,/dl to terms of first order in J,,.

38, F*—F

Thus T = e
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DISCUSSION ON ORBITAL ANALYSIS 123

OF[0Lis —p2|L® and F*—Fis — (ufr) J,(a,[r)2P,(cos ), which can be written in terms of
the Delaunay variables.

Hence S can be found by a single direct integration with respect to /; all other trans-
formed variables can then be found by differentiation:

G = G'+408,/dg, for example.

A further transformation leads to a Hamiltonian F** that is independent of g’ also,
that is, it is a function of the transformed momenta, L”, G”, H”, alone. But these are
constants because SH" P

a g

The rates of change of the transformed coordinates then follow directly

g" = oF**[dG" and so on,
and from these, by retracing the transformation, the behaviour of the original osculating
variables, /, g, , may be recovered.

The advantage of this way of handling the equations of motion is that the terms that
are periodic in / (short period terms) and g (long period terms) are handled systematically,
and the definitions of the various elements are clear.

The transformed coordinates, such as g’, 4", are comparable with the mean osculating
elements used in Lagrangian theories, though not always identical. Thus, Brouwer’s
results are formally different from those of Lagrangian theories but here again it has been
shown that they are equivalent.

An effectively complete first-order theory of perturbation of an elliptic orbit is available
for zonal harmonics, that is, the procedure for calculating secular, long-period and short-
period terms corresponding to any zonal harmonic in the potential is known and explicit
results are available for harmonics up to about the 22nd order. In addition, the terms
proportional to J3 have been derived in a number of different ways. The perturbations
fall into distinct classes according to whether they arise from even zonal harmonics, odd
zonal harmonics or tesseral harmonics. The dominant terms arising from the even zonal
harmonics are secular changes of the longitude of node and perigee; all elements contain
terms of argument 20, which are however of order ¢*. The principal terms arising from
the odd zonal harmonics are long periodic terms, of argument w, and order ¢ in node,
perigee, inclination, eccentricity and perigee distance. Short-period terms are present in
all perturbations but tesseral harmonics give rise to neither secular nor long-period terms;
the principal perturbations due to tesseral harmonics have arguments that are multiples
of (¢—Q), where ¢ is equal to the longitude of an observing site plus sidereal time.

The theory of orbits has thrown up a number of intricate problems, in particular, that

of the behaviour of a satellite in an orbit with the critical inclination, given by

cos?i = ¢,

= 0, for example.

for which the rate of rotation of perigee is zero. While of great theoretical interest, this
problem, which has not been fully clarified, does not seem to arise in practice.

The problem of commensurable orbits, another situation in which the simple first-order
theory fails, is now, on the other hand, of great practical importance, for it has become
possible to determine the term involving P2 (cos 0) as well as terms of quite high order from

16-2
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124 A. H. COOK

observations of commensurable orbits. In these orbits, the ratio of the mean motion of the
satellite, 7, to the speed of rotation of the Farth, @, is a rational number. If the potential
includes tesseral harmonics, it varies periodically with time at any point fixed in an inertial
coordinate system and the Hamiltonian is an explicit function of time. If the Delaunay
variables are denoted by the suffix D, new variables may be chosen appropriate to co-
ordinates rotating with the Earth, namely

L=1lp &= gp h="hp—0(i—1).
The conjugate momenta must satisfy the condition that
Ldl+Gdg+HdAl—Lydl,—G,dg,—Hpdh,— (Fp,—F)d¢
should be a perfect differential. The necessary relations are
L=1L, G=G,
H=H, F=F,+6H.
If'V,, is a potential term proportional to P4 (cos 6) cos ¢(A—f,,), ,, being a phase angle,
F = (u*|2L*) +V,, +6GH.
Let von Zeipel’s transformation be applied to determine the orbital variations due to
the term V,; V,, can be expanded as a series of terms like

a>
ahy by sy -+ kg + gL )],
The transforming function may similarly be written as the identical-transformation plus

a series of terms like yhyky cos [ky [4-kyg+g(A—B,,)],
and on applying von Zeipel’s transformation it will be found that
Yhiky = 2Rk \orando 1962).

ky (42| L*%) — g

If @ and #2/L*3, which is equal to the mean motion, are commensurable, there will
always be one term for which the denominator vanishes and the transformation cannot be
applied.

In that case, secular perturbations arise, or more generally, if the orbit is nearly com-
mensurable, the perturbations are periodic, the periods being longer the closer the motion
is to being commensurable.

The following table (Yionoulis 1965) shows the orbital period and altitude at which
commensurability occurs for a given degree of tesseral harmonic:

period altitude
m (min) (km)
2 718 20200
5 287-2 6180
8 1795 4160
9 159-6 3360
10 143-6 2710
11 130-0 2120
12 119-7 1670
13 1105 1240
14 102-6 880

In the last few years, the theory of commensurable orbits has been considerably developed,
especially in its application to synchronous orbits and geostationary satellites. (See Allan
1965; Anderle 1965; Yionoulis 1965, 19664, b.)
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DISCUSSION ON ORBITAL ANALYSIS 125

It is something of a disadvantage that the second zonal harmonic, which is about 103
times greater than any other, should have to be treated by an approximate method ; Vinti
(1959) has shown how it may be incorporated in an exact treatment. The Hamilton—
Jacobi equation admits of an exact solution by separation of variables in oblate spheroidal
coordinates provided the potential (in spherical coordinates) is of the form

i (L= (a,fr)2 TPy (08 0) + .o+ (=) (a,/r)2 (Jp) Py, (cos 0) +...],

There are two disposable constants in this form, # and J,, which may be chosen to fit
the actual values for the Earth. It then happens that the coefficient of P, is close to the
actual value but all other actual coefficients are much greater than in the Vinti potential.
‘Thus the dominant second zonal harmonic can be treated exactly but perturbation methods
must still be used for all others.

'The orbit may then be described by variables similar to the Delaunay variables, and if
the potential is of the Vinti form all but one of those variables will be constant, the
remaining one being a linear function of time.

It should then be possible to compare the results of Vinti’s theory for the P, term with
that obtained from the second-order perturbation theory described earlier. The connexions
between the canonical variables in Vinti’s theory and the elliptic elements are however
rather intricate and, although Iszak (1962) had explored some of them, the work has not
been taken far enough to show explicitly whether Vinti’s theory and second-order perturba-
tion theory do in fact give the equivalent results for, say, the behaviour of the node.

It is not possible to ignore all other forces and obtain good estimates of the Earth’s
potential. To first order, the resistance of the air does not affect the motion of node and
perigee, but there are second-order interactions together with larger effects on eccentricity
and inclination, so that an adequate theory of the effects of air resistance is required to
enable corrections to be applied. This is important for close satellites. Radiation pressure
and the attraction of the Sun and the Moon are important at greater distances. First-
order perturbation theory is adequate but the algebra is quite complex and cannot always
be carried out literally for radiation pressure.

3. ESTIMATION PROBLEMS

Analysis of the motion of an artificial satellite gives an amplitude for the term of a
particular periodicity in the perturbation of some element that may be compared with
that calculated from the theories outlined in the previous section. Thus, to take the secular
motion of the node, the observed change in one nodal period, §C), say, may be written as

0Q, = ayJyta, I+ ...+ a5, Jo,+ ..+ ad+ 082, o+ 0Qp+Q,,
where §€2; ¢ is the luni-solar part due to the attraction of the Sun and the Moon, 60 is the
part due to solar radiation pressure and €, is the part due to atmospheric interaction.

These three terms can all be calculated, as can aJ3, since J, is well enough known for
the term to be estimated with sufficient accuracy.

Each satellite can therefore provide an observation equation

aj2J2+aj4J4+... +a]2nJ2n == y]'

The parameters a;,...a are functions of the orbital elements.

jzn, cos
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126 A. H. COOK

The major problem in estimating the coefficients J,, from such sets of observation
equations is that there are more coefficients to be found than there are distinct observation
equations.

Most of the satellites that have been launched are unsuitable for determining the
potential because they have such short lives that the orbital elements cannot be found with
sufficient accuracy. Of the usable orbits, few are clearly distinct. If a set of observation
equations leads to a singular set of normal equations for the parameters to be determined,
the addition of a further observation equation that is a multiple of an existing one will
not reduce the singularity of the normal equations. The addition of an equation which is
nearly a multiple of an existing one may formally remove the singularity but will leave the
normal equation ill-conditioned, so that the estimates of the parameters will be strongly
correlated and have large uncertainties. The best determination will come from observa-
tion equations in which the coefficient of a different parameter dominates each separate
equation while the worst determinations will come from equations in which the relative
magnitudes of the coeflicients are similar in all equations.

The factors a, in the observation equations are functions of the elements a, ¢ and <.
a enters in the factor (q,/a)” and for close satellites with a ~ a,, does not vary greatly up
to n ~ 12. However, if a exceeds about 8000 km, harmonics beyond the 6th can be ignored.
e enters as some power of (1—e?) (for the secular terms) and as ¢ is usually quite small,
variations in ¢ have little influence on the a,. The dominant influence is that of 7 and the
greatest differences between observation equations are obtained by taking orbits with many
different inclinations distributed as uniformly as possible from 0 to 90°. However, most
orbits fall into some seven rather narrowly limited bands and so there are in effect only
some seven clearly distinct observation equations for close satellites. It is now clear that
this is less than the number of even or odd zonal harmoc terms that must be retained to
give an adequate description of the potential. A study of the secular motions of node and
perigee and of the estimates of the even zonal harmonics (Cook 1965) showed that harmonics
beyond the 12th could not be ignored. By using orbits of semi-major axes large enough for
the products a4Jg, a,9J 4, ... to be ignored, the coefficients J,, J, and J; can be found
with quite small errors. Estimates of Jg, J1,, J;, and J,,, made from data on other satellites,
are available but must be considered to have large uncertaintics and to be strongly
correlated ; the correlation is due to the fact that each harmonic occurs significantly in all
observation equations and that the number of observation equations exceeds by only 1 or
2 the number of harmonics being estimated.

The conclusions apply to all three classes of harmonic. There is an infinite set of
harmonics that give rise to perturbations of given periodicity, secular, long term or short
term of argument ¢(¢—£2). There is only a limited number of satellites of distinct incli-
nation and unless satellites with a wide range of semi-major axis can be used, there will be
more significant products a,J, ... than there are observation equations. D. G. King-Hele,
G. E. Cook & D.W. Scott (this volume, p. 144) have been able to estimate a greatly
extended set of odd harmonics by making use of orbits with a wide range of semi-major
axes as well as of inclination, but generally it must still be considered that we know little
more than the orders of magnitude of most harmonic coefficients.

In view of the difficulties of estimating the coefficients of spherical harmonics, it is
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DISCUSSION ON ORBITAIL ANALYSIS 127

sometimes suggested that an alternative representation be used. It is possible to make a
minor change by using the algebraic direction cosine form of spherical harmonics, for
which a close satellite theory similar to the Hill-Brown lunar theory was given by Brouwer.
Any set of functions other than spherical harmonics is inconvenient because they are not
orthogonal. The main problem would not, however, be affected by any such re-formula-
tion: the difficulty lies in the number of independent parameters needed to represent the
potential adequately. A satellite at a height of say 500 km above the surface will experience
an attraction corresponding to the average surface gravity field over an area of approxi-
mately 300 x 300 km, or about 15°x 15°. The surface of the Earth is covered by some
400 such areas and it is known from statistical studies of surface gravity that while the
mean values in areas of such dimensions are to some extent correlated, corresponding to
the existence of harmonics of low order in the potential, there is a substantial uncorrelated
component. It follows that, however the potential is represented, well over 100 parameters
are needed.

4. NUMERICAL VALUES
(a) Even zonal harmonics

Observation equations for the even zonal harmonic coefficients are the easiest to obtain
because they use the secular changes which can be obtained with great accuracy by simple
methods of observation extended over a long time.

The term proportional to J% must be properly calculated: this means that careful
attention has to be given to the definition of orbital elements and the relation of them to
the scheme for the reduction of observations.

Recent results are summarized in table 1. The estimates by Cook (1965) are obtained
from orbits with semi-major axes large enough for the influence of the eighth and higher
harmonics to be small. It was concluded in the same study that actual values of these
higher harmonics could not be estimated from the available data but that the order of
magnitude of the coefficients of these harmonics was about 0-2x1075. The range of
estimates in table 1 appears to confirm this conclusion.

TABLE 1. VALUES OF EVEN ZONAL HARMONICS

A.H. Cook King-Hele & Kozai Smith

coefficient (1965) Cook (1965) (1964) (1965)
108 J, 1082-65 1082-68 1082-64 1082-64
J, —1-60 —1-61 —1-65 —1-70

Js +0-73 +0-71 +0-65 +0-73

J — +0-13 —0-27 —0-46

J1 - +0-09 —0-05 —0-17

Jiy — —0-31 —0-36 —0-22

J 1 — — +0-18 +0-19

J, is the coefficient of (a,[/r)" P, (cos 0).

(b) Odd zonal harmonics

Estimates of the odd zonal harmonics are given in table 2. The results reported to this
meeting by D. G. King-Hele and his collaborators have greatly extended our knowledge
of these harmonics.
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TABLE 2. VALUES OF ODD ZONAL HARMONICS
Guier & King-Hele,

Smith Kozai Newton Cook & Scott

coefficient (1963) (1964) (1965) (1967)
106 J, —2:44 —2-55 —2:69 —2:50
Js —0-18 —-0:21 —0-01 —0-26
J; —0:30 —0:33 —0:63 —0:40

Jg — —0:45 +0-21 00
Jn — +0-30 - —0:27
Jis — —0-11 — +0-36
J15 — — —_— "—0‘65
Ji —_ — — +0-30

Jie — —_ — 0-0
I — — — +0-58

J, is the coefficient of (a,/r)" P,(cos ).

(¢) Tesseral harmonics

Tesseral harmonics are particularly difficult to estimate. Short period perturbations are
more difficult to observe than long period or secular perturbations and they involve
knowing the geocentric position of the observing station. Thus the tesseral harmonics
cannot be found independently of the station positions and the results of Iszak, for example,
are obtained from an adjustment in which tesseral harmonics and corrections to station
coordinates are determined simultaneously.

Some determinations are available from commensurable orbits. The P%(cos ) term
has been estimated from the librating position of a geostationary satellite (Allan 1964).

Commensurability effects have been found (Anderle 1965; Yionoulis 1965, 19664, 4) in
the orbits of the following satellites:

inclination nodal period

(deg) (min) m
1961 o1 67 103-8 14
1962 ful 50 107-8 13
1963 49B 90 107-2 13
1964 26 A 90 103-1 14

The periods of the commensurability terms range from 2:5 to 14 days. Effects of higher
order commensurability with m = 27 have been observed (Anderle 1965).

The results of the analyses of these orbits are included in table 3. They are made
possible because of the high accuracy of along-track and slant range Doppler tracking data.

Generally speaking, the scatter of estimates of the tesseral harmonics is very great, once
again owing to the fact that the harmonics which have not been determined are not
negligible.

(d) Normalization, orders of magnitude

Many different conventions for choosing the numerical coeflicients of spherical
harmonics will be found in the literature. Following general practice, the zonal harmonics
are expressed in terms of the Legendre coefficients, P, (cos f),

2

: . i 2 -2
for which fo {P,(cos 0)}*d(cos ) = on1°
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where the integral is taken over the surface of the unit sphere.
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TABLE 3. VALUES OF TESSERAL HARMONICS (COEFFICIENTS X 105)

Iszak
(1966)
f_:“—A'—":_’\
Cnm Sﬂm
2:08 —1-25
1-60 —0-04
0-38 —0-08
—0-17 1-40
—0-38 —0-40
0-20 0-58
0-69 —0-10
—0-11 0-43
—0-14 —0-04
0-24 —0-27
—0-67 0-05
—0-13 0-16
0-08 —0-41
—0-02 0-12
0-05 —0-23
0-05 0:00
0-07 —0-39
—0-28 —0-38
—0-12 —0-59

Guier & Newton

(1965)
/—"“’-L“*ﬁ
Unm S’nm
238 —1-20
1-84 0-21
122 —0-68
0-66 0-98
—0-56 —0-44
0-42 0-44
0-84 0-00
—0-21 0-19
014  —0-17
027  —0-34
0-09 0-10
—049  —0-26
—0-03  —0-67
0-00 0-10
—0-16  —0-16
0-53 0-05
—031  —0-51
—0:18  —0-50
001  —023
013 0-09
0-46 0-06
039  —o021
—0-14 0-00
—0-:06  —0-19
—045  —075
009  —0-14
—0-15  —0-05
009  —0-04
—005 0-22
—0:07  —0-04
008  —0-00
—0-02 0-67
017 —0-07
—0-15 0-07
—0-046 0-048

Anderle
(1965)

Y

C—nm Snm
2-45 —1-52
2:15 0-27
0-98 —0-91
0-58 1-62
—0-49 —0:57
0-27 0-67
1-03 —0-25
—0-41 0-34
0-03 —0-12
0-64 —0-33
-0-39 —012
—0-55 0-15
0:21 —0:59
-0-08 0-19
0-13 —0-46
—0-02 —0-13
-0-19 —0-32
—0-09 —0-79
—0-32 —0-36
0-33 0-08
—0:35 —0-19
0:32 0:04
—0-47 —0:24
0-05 0:02
—0-48 —0-24
—0-03 0-11
—0-06 —0-06
0-01 —0-03

Yionoulis

0-09
0-10
0-07
0-05
0-01

129

(1965, 19664, b)
.___A___._\

—

0-01
0-01
0-02
6-02
0-00

are coefficients of the harmonics Y,,, = P,,, (cos ) (cos mA, sin mA) which are normalized such
f Y2.ds = 4m.
unit sphere

The simplest convention for the tesseral harmonics is that suggested by Kaula; in it the
integral of the square of a surface harmonic over a unit sphere is 47; thatis, if ¥, (4, A)
is a surface harmonic in this convention

f sphere

Yz dS = 4.

nm

Vour. 262.

A,
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IfC,, S

' > S, are the coefficients of cosine and sine terms in this convention and if C,,,,
S, are the coeflicients of P (cos ) [cos mA, sin mA] then

(gZ) = ST Eﬁi%i (gm)

TABLE 4. SUMS OF SQUARES OF AMPLITUDES OF HARMONIC COEFFICIENTS

y n %Ch (=cz,)t
A m m
<<1 10-12 10-6
2 10-7 33
3 80 2-8
E 4 2-3 1-5
5 5 0-9 0-95
—_— 6 0-7 0-84
@) 7 08 09
O 8 0-6 0-77
w 13 to 20 about 0-2
)
Z
o
5 410
<0
%)
<
=

P | 1 |
[, 2 4 8 12 16 20
o order of harmonic
P Ficure 1. Root sum of squares of harmonic amplitudes as function of order. Normalization:
= -
28] f Y248 = 4m.
- unit sphere
O
)
< The numerical advantage of this convention is that the sum square amplitude of all
72 . . .
Z harmonics of order n is simply _
= m
26
L In table 4 an attempt has been made to estimate these total mean square amplitudes
s and an idea of the behaviour is sketched in figure 1.
=
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5. CoNCLUSION

While the theory of satellite orbits is well developed and adequate for the determination
of tesseral as well as zonal harmonics, the available data are sufficient to give reliable
estimates of only a few harmonics, although fairly definite ideas of the orders of magnitude
of other harmonics are becoming clear. Much better estimates of the zonal harmonics
would be possible if orbits with inclinations less than 28° were available. The work of
D. G. King-Hele, G. E. Cook & D. W. Scott (this volume, p. 144) and that of Anderle
(1965) on high-order tesseral harmonics both show that great advances in our knowledge
of the harmonic coefficients are still possible and may be expected.

Although some detailed estimates of the harmonics may be unreliable for use in geo-
physical studies, much can be learnt from the orders of magnitude and from correlations
of the harmonics of low order with other physical properties of the Earth. It is clear, and
recent results greatly strengthen the conclusion, that there must be appreciable density
anomalies in the mantle. In particular the harmonics beyond the 12th or 13th order
cannot arise from irregularities of the core-mantle boundary. On the other hand, a lack
of correlation with the distribution of continents and oceans shows that the sources must
lie below the crust and probably below the uppermost part of the mantle but a correlation
with heat flow combined with a consideration of the maximum depth at which the heat
sources can lie suggests that the sources of both the irregular gravity field and of the heat
flow lie in the upper part of the mantle. These are certainly valuable inferences.
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Tesseral harmonics of the Earth’s gravitational field from
camera tracking of satellites

By W. M. KavrLa

Institute of Geophysics and Planetary Physics,
University of California, Los Angeles

[ABsTRACT]

A total of 7234 Baker-Nunn camera observations of five satellites were analysed to deter-
mine simultaneously 44 tesseral harmonic coefficients of the gravitational field, 36 station
coordinates, and 511 orbital elements. Supplementary observational data incorporated in
the solution included accelerations of 24 h satellites and directions between tracking
stations from simultaneous observations; observation equations were also written for the
differences between geometrical and gravitational geoid heights at tracking stations.
Several variations in relative weighting of different observational data and a priori
variances of parameters were tested. The previous independent solution most closely
approached was that by Anderle based on Doppler data, from which the r.m.s. discrepancy
was - 0-18 x 106 for 38 normalized harmonic coefficients, or 4+ 7 m in total geoid height.
An equatorial radius of 637816045 m was obtained.
The complete paper is published in J. Geophys. Res. 71, 4378 (1966).
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Tests and combination of satellite determinations of the
gravity field with gravimetry

By W. M. KauLa

Institute of Geophysics and Planetary Physics,
University of California, Los Angeles

[ABsTRACT]

Six solutions for the tesseral harmonic coefficients of the geopotential from satellite orbit
analysis were compared to terrestrial gravimetry in the form of mean free-air anomalies of
300 n. mi. squares. Statistical parameters calculated were the mean square values of each
type of determination as well as the mean square difference for different samples based on
the number of observations in the 300 n. mi. square.

The study showed significant variation in quality between different solutions, the best
being that recently obtained from camera tracking of satellites by M. Gaposhkin of the
Smithsonian Astrophysical Observatory. It also showed that the arithmetic mean of four
independent satellite solutions was better than any single solution. This combined satellite
solution was used in an adjustment with the gravimetry to obtain a single best solution,
in the forms of a geoid map; spherical harmonic coefficients to degree and order 12, 12;
and gravity anomalies at 10° intervals.

The complete paper is published in J. Geophys. Res. 71, 5303 (1966).
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